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Quantitative transcriptomic and proteomic
analyses reveal the potential maintenance
mechanism of female adult reproductive
diapause in Chrysoperla nipponensis
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Abstract

BACKGROUND: The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits
reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause
under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still
unknown.

RESULTS: The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in
C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in
C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and
5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics
revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic
pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK,
JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed
in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the
occurrence of vitellogenesis and expression of either Vg or VgR.

CONCLUSION: Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcrip-
tomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult
reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism
of C. nipponensis during adult reproductive diapause.

© 2023 Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: Chrysoperla nipponensis; reproductive diapause; proteome; transcriptome; diapause maintenance
]

1 INTRODUCTION

Diapause is an important adaptative strategy by which many
insects survive in adverse environmental conditions."? There are
two types of diapause: facultative, which is elicited by environ-
mental cues (commonly photoperiod and temperature); and
obligatory, which occurs at a specific development stage with
no requirement for a token stimulus."** Bactrocera minax and
Leguminivora glycinivorella enter obligatory pupal diapause every
generation,>* whereas short daylengths and low temperatures
are required for diapause induction in Laodelphax striatellus. In
Colaphellus bowringi, larval experience under a long photoperiod
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at 25°C causes facultative reproductive diapause in adults.®
Because feeding is often stopped or reduced, sufficient nutrient

reserves are critical for successful overwintering and diapause.”

Triacylglycerides are the dominant form of reserved energy
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substrates in diapause insects.">® In Harmonia axyridis, the daily
feeding amount of both pre-diapause males and females was sig-
nificantly lower than that of both pre-reproductive male and
female adults.” Meanwhile, pre-diapause female adults reserved
more carbohydrates and lipids, whereas pre-diapause male accu-
mulated only more carbohydrates.® Similarly, pre-diapause
females of Colaphellus bowringi synthesized and accumulated
more triacylglycerol (TAG) in the fat body, whereas reproductive
females channeled nutrients into proteins and carbohydrates for
egg reproduction.” Several studies have revealed that juvenile
hormone (JH) and the insulin signaling pathway are the key regu-
lators involved in diapause induction, maintenance, and
termination.” %"

JH is one of the most important hormones involved in various
insect physiological processes, including insect development,
metamorphosis, diapause, reproduction and immunity."'"'2 In
H. axyridis and Bombus terrestris, diapause adults had a lower JH
titer than non-diapause adults.”>"* Furthermore, cultured corpora
allata dissected from non-diapausing females of Culex pipiens
secreted more JH than corpora allata from diapause females.'
Topical application or injection of synthetic JH and JH analogs
can rescue diapause adults from reproductive arrest in many
insect species including Colaphellus bowringi, H. axyridis, Culex
pipiens and B. terrestris.'®'” Knockdown of juvenile hormone acid
methyltransferase (JHAMT) in Leptinotarsa decemlineata, Sogatella
furcifera, H. axyridis, Colaphellus bowringi and Blattella germanica
leads to ovarian development arrest.'®'®2° Besides the JH bio-
synthesis genes, JH receptor methoprene-tolerant (Met) and JH
downstream transcription factor kriippel homolog 1 (Kr-h1) are
also involved in the insect diapause.'”2"%2 Similar to the diapause
state, depletion of Met in Pyrrhocoris apterus, Colaphellus bowringi,
Galeruca daurica and H. axyridis resulted in ovarian development
arrest.'®'721"23 Consistent with this, silencing of Kr-h1 prevented
ovarian development in Nilaparvata lugens, Locusta migratoria
and Colaphellus bowringi.">*** Insulin signaling is another well-
documented regulator of insect diapause.'**?” Injection of
bovine insulin into diapausing pupae of Pieris brassicae and
Antheraea pernyi, or human insulin into diapause queens of
B. terrestris terminated diapause.'®*®%° Inhibiting the expression
of insulin receptors (InRs) and insulin-like peptides (ILPs) in Culex
pipiens and Chrysopa pallens blocks ovarian development.?’%3'
JH Il and methoprene, a JH analog, can rescue ILP and InR RNA
interference (RNAI) caused ovarian arrest in Culex pipiens, respec-
tively.?”° Furthermore, inhibiting expression of FOXO, the down-
stream gene of insulin signaling, significantly influenced the
storage of nutrients in diapause Culex pipiens adults and
L. striatellus nymph.?’32

Weight

Lipid content

TAG content

Sequencing (RNA-seq & Proteome)

L5 L7 Lay eggs

Long photoperiod LO

Short photoperiod SO S10 S20
Weight
Lipid content
TAG content
Sequencing (RNA-seq & Proteome)

S40 S42 Lay eggs

FIGURE 1. lllustration of the experimental design. L, long photoperiod; S,
short photoperiod.

The green lacewing, Chrysoperla nipponensis Okamoto
(Neuroptera: Chrysopidae), is an important biological control
agent for numerous agricultural and forest pests that has a wide
geographic distribution and is highly adaptable.>*® The maxi-
mum predation number of first, second and third instars of
C. nipponensis on Aphis gossypii within 24 h was 13.8, 65.9, and
114.6.3* In temperate regions, female adults of C. nipponensis
enter facultative reproductive diapause during early winter and
start reproduction in spring of the following year.?**” Usually,
C. nipponensis diapause lasts several months. Chen et al. found
that photoperiod was the most important environmental factor
in the induction and maintenance of reproductive diapause in
C. nipponensis.>® Female adults of C. nipponensis enter reproduc-
tive diapause with obvious changes in body color (reproductive
females are green; reproductive diapause females are brown
and yellow) when reared on a short photoperiod under laboratory
condition.3®3° However, there is no information about the molec-
ular mechanisms of reproductive diapause in C. nipponensis.
Because of the increasing importance of C. nipponensis as a bio-
logical agent, understanding the molecular regulation of this cru-
cial life history trait could help us improve the mass storage and
shipment of this insect. Thus, in this study, we first quantified
the weight, lipid, and TAG content of C. nipponensis females dur-
ing overwintering in a field population and at three different dia-
pause statuses in a laboratory colony (short photoperiod-induced
reproductive diapause). We then conducted transcriptome and
proteome analysis of C. nipponensis females at three different dia-
pause statuses in a laboratory colony to explore the potential
maintenance mechanisms of C. nipponensis females during adult
reproductive diapause at the molecular level.

2 MATERIAL AND METHODS

2.1 C. nipponensis rearing and sample preparation

To quantify the weight, total lipid, and TAG content of
C. nipponensis during winter, we collected female adults of
C. nipponensis at the campus of Shandong Agricultural University
(36°20° N, 117°13'E, Tai'an, Shandong, China) from September
2019 to June 2020.

Laboratory colonies of C. nipponensis were maintained in an arti-
ficial climate chamber (RXZ-380C, Ningbo Dongnan Instrument
Co.) at 25 + 1°Cand a 15:9 h light/dark photoperiod, as described
in our previous study.>® For diapause induction, eggs were trans-
ferred to fingertip tubes (1 cmin diameter and 7 cm in height) and
kept under a short photoperiod (9:15 h light/dark photoperiod)
and 25 + 1°Cuntil sample collection (Figure 1) at the adult stages
(SO, day 0; S10, day 10; S20, day 20; S40, day 40 after eclosion).
Adults that emerged from the colony under normal conditions
(long photoperiod 15:9 h light/dark and 25 + 1°C) were used as
a positive control and collected at day 0 (LO) and 5 (L5) after adult
eclosion (Figure 1).

2.2 Measurement of weight, total lipid, and TAG content
The fresh weight of adults at the sample collection time points
was measured using an electronic microbalance (Sartorius Analys-
tic; N = 25). C. nipponensis adults were dried in an oven (Yiheng) at
60°C for 72 h. After drying, dry weight was measured using the
electronic microbalance (Sartorius Analystic; N > 25). A one-way
analysis of variance (ANOVA) was used to analyze the differences
among the sample times followed by separation of means using
Fisher's protected least significant difference (LSD) test at
p = 0.05 (SPSS 22.0, SPSS Inc.).
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The dry weight of each adult female (DW) was recorded at each
time point to measure the total lipid content. Meanwhile, each
fresh adult was transferred into a new Eppendorf tube, weighed
(W1), and then homogenized in 500 pl of chloroform/methanol
(2:1). All samples were centrifuged at 2600 g for 10 min, and the
pellets were kept. The previous step was repeated and samples
were dried in an oven at 60°C for 72 h. The weights of dried sam-
ples (W2) were measured using an electronic microbalance
(Sartorius Analystic; N = 25). The total lipid content was calculated
as (W1 — W2)/DW. TAG content was determined using a triglycer-
ide assay kit (code A110-2-1; Nanjing Jiancheng Bioengineering
Institute) following the manufacturer's protocol. The total lipid
and TAG content of 30 female adults was measured for each time
point. Differences in total lipid and TAG among treatments were
also determined by ANOVA with LSD test at p = 0.05 (SPSS 22.0,
SPSS Inc.).

2.3 RNA extraction and transcriptome sequencing

The total RNA of all samples (three female adults per replicate and
three biological replicates per treatment) was extracted using
RNAiso plus (code 9109; Takara Bio) according to the manufac-
turer's protocol. The quantity and quality of RNA were assessed
using Nanodrop (Life Technologies) and Agilent 2100 (Agilent
Technologies) at Jingjie PTM BioLabs. Synthesis of complemen-
tary DNA (cDNA) and the sequence of library preparations on
the lllumina Novaseq platform (lllumina) were finished by Jingjie
PTM BioLabs with 150 bp paired-end reads. Quality control, de
novo transcriptome assembly using Trinity, gene functional anno-
tation, and differential expression analysis by DESeq2 were
accomplished as previously described.***' Heat maps were con-
structed based on the differential expression analysis using pheat-
map in R 4.0.4** The sequences reported here have been
deposited in the Genbank SRA database (BioProject ID:
PRINA788306).

2.4 Tandem mass tag (TMT)/Isobaric tags for relative and
absolute quantitation (iTRAQ)

The sample was ground into a powder using liquid nitrogen and
then transferred to a 5 ml centrifuge tube with 4 vol. of lysis buffer
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(8 m urea, 1% Protease Inhibitor Cocktail). All samples were soni-
cated three times on ice using a high-intensity ultrasonic proces-
sor (Scientz). The remaining debris was removed by
centrifugation at 12 000 g at 4°C for 10 min. The supernatant
was collected, and the protein concentration was determined
with a BCA kit (Thermo Fisher Scientific) according to the manu-
facturer's instructions. After protein extraction, the samples were
digested with trypsin at 1:50 for the first digestion (12 h) and
1:100 for the second digestion (4 h). All samples were desalted
and vacuum-dried, followed by tandem mass tag (TMT)/Isobaric
tags for relative and absolute quantitation (iTRAQ) labeling using
TMT/iTRAQ kit (Thermo Fisher Scientific). Liquid chromatogra-
phy-tandem mass spectrometry analysis, database search, and
bioinformatic analyses were conducted by Jingjie PTM BioLabs
using standard procedures.'® Proteome data are available via Pro-
teomeXchange with identifier PXD030378 (http://www.ebi.ac.uk/
pride).

2.5 Validation of selected genes by quantitative
polymerase chain reaction

Quantitative polymerase chain reaction (qPCR) analysis of several
selected genes was performed using a CFX96 Touch Real-Time
PCR Detection System (Bio-Rad) to verify the transcriptomic and
proteomic results. The total RNA of all samples (three female
adults per replicate and three biological replicates per treatment)
was extracted using RNAiso plus (code 9109; Takara Bio) as
described above. cDNA was synthesized from total RNA using a
FastQuant RT Kit (with gDNase) (code KR106; Tiangen) according
to the standard manufacturer's protocol. The primers used are
provided in Table S1. Twenty microliters of the gPCR mixture con-
tained 2 pl of cDNA, 0.8 pl of each primer, 6.4 pl of ddH,O0 and 10 pl
of TB Green (code RR420W; Takara Bio). The qPCR program and
statistical analyses are referred to in Kang et al.** and Wang et al.>®

2.6 Effects of topical application of JH Ill on pre-
oviposition period and fecundity of female diapause

adults

Newly emerged female adults under the short photoperiod con-
dition were collected and incubated at 4°C for 30 min to reduce
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FIGURE 2. Changes in weight, total lipid and triacylglycerol (TAG) content during overwintering and at different diapause phases. L, long photoperiod; S,

short photoperiod.

Pest Manag Sci 2023; 79: 1897-1911

© 2023 Society of Chemical Industry.

wileyonlinelibrary.com/journal/ps



http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride
http://wileyonlinelibrary.com/journal/ps

SClL )
where science WWW.SOCi.org Z-Z Chen et al.

meets business

(A) ©
Total sequence Total sequence  Max Min Average Transcriptome
number length length  length length RED RED COmament
Unigenes 64388 44726244 33101 197 694 2055 233 33.13%
Transcripts 71999 57382674 33101 194 796 2274 239 32.89%
(B) 342
Matched 5 , N g A Quantifiable
Total spectrum A Peptides Unique peptides  Identified proteins e Proteome
812156 182261 (22.4%) 97214 95767 5532 4942
D
( ) 150 1
100 4
~ 401
-~ =
i ®
£ 504 =
o= <
L
z 04 © 04 A
o X
Sl ‘\“
S 50 o
- Y7 — - L0
g ) g s
-40 1
-100{ -0
é - 810
- S20
-150 1 T T T T T T T T T T - S40
-150 -100 50 0 50 100 150 -40 0 40
PC1 (43.8% explained var.) PC1 (52.7% explained var.)

FIGURE 3. Overall transcriptomic and proteomic analyses of Chrysoperla nipponensis female during adult reproductive diapause. (A,B) Basic information
about transcriptome (A) and proteome (B). (C) Overlap of identified unigenes and proteins between transcriptome and proteome. (D) Principal compo-
nents analysis (PCA) analysis of the abundance of transcripts from transcriptomes (left) and proteins from proteome (right).
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FIGURE 4. Differentially expressed genes and proteins of Chrysoperla nipponensis female during adult reproductive diapause. (A) Stratified cluster heat
map of transcriptomic and proteomic data based on their abundance correlation. (B) KEGG pathway of clusters 1, 2 and 6. Data are presented as means of

three independent samples.

their activity. Fifteen micrograms of JH IIl (E589400, Toronto  females were maintained as described above. The pre-oviposition
Research Chemicals) or acetone were applied to the abdomen period and fecundity were recorded. Females reared under long
through topical application using a microinjector. All treated  photoperiods were used as a positive control. Differences in pre-
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TABLE 1. Differentially expressed genes and proteins
Transcriptome Proteome
Treatment Upregulated Downregulated Upregulated Downregulated
SO vs. LO 57 33 76 43
L5 vs. LO 2010 3332 916 887
S10 vs. SO 1969 2685 882 1267
S20 vs. SO 2102 2260 961 1353
S40 vs. SO 2611 3133 928 1279
TABLE 2. Putative circadian clock genes of Chrysoperla nipponensis
Gene ID Gene name Best blast Accession e-value Percent identity
DN328_c3_g1 PER Period circadian protein [Chrysoperla carnea) XP_044728341.1 0 95.48
DN1200_c22_g1 CLK PREDICTED: clock isoform X1 [Tribolium castaneum] XP_008199501.1 0 59.84
DN857_c2_g2 TIM Protein timeless [Chrysoperla carneal XP_044729573.1 0 99.50
DN3077_c0_g1 cYc Protein cycle isoform X1 [Chrysoperla carnea] XP_044733956.1 0 99.86
DN862_c39_g1 CRY1 Cryptochrome-1 [Chrysoperla carneal XP_044734495.1 0 99.07
oviposition period and fecundity among the treatments were
determined by ANOVA with LSD test at p = 0.05 (SPSS 22.0, SPSS (A)
Inc.). PER H RNA-Seq
TIM
CLK [:I Proteome
3 RESULTS ove
3.1 Changes in weight, total lipid, and TAG content CRY1 . D
The lowest temperature in winter 2019/2020 was —9°C on 2
31 December (Figure S1). Between 15 November and 8 February, [ T T T Jcryt I I
mean and lowest temperatures were below 10°C and 0°C, respec- LO L5 SO S10 S20 S40 | .
tively (Figure S1). The fresh weight (df = 8; F = 234.6; p < 0.001)
and dry weight (df = 8; F = 69.72; p < 0.001) of C. nipponensis
increased, reaching the highest values in January (Figure 2). There (B) 0 0
were obvious accumulations of total lipid (df = 8; F = 75.26; Vg
p < 0.001) and TAG content (df = 8; F = 208.6; p < 0.001) during VgR
overwintering (Figure 2). In the laboratory, the fresh weight Vg -1 -1
(df = 5; F = 644.1; p < 0.001) and dry weight (df = 5; F = 1370; VeR
p < 0.001) of female adults were increased after eclosion in both LO L5 SO SI0 S20 S40 )

diapause and non-diapause female adults, whereas the dry
weight of diapause female adults increased more slowly than that
of non-diapause female adults (Figure 2). Similarly, the total lipid
content (df = 5; F = 695.3; p < 0.001) of diapause female adults
at days 10, 20 and 40 were significantly higher than for other treat-
ments (Figure 2). TAG content (df = 5; F = 41.83; p < 0.001) of
newly emerged adults and diapause female adults was signifi-
cantly higher than that in non-diapause female adult at day
5 (Figure 2).

3.2 Overall results of the transcriptomic and proteomic
analysis

In this study, we identified 71 999 transcripts, 64 388 unigenes,
and 5532 proteins (Figure 3A,B). Among these, 5190 genes were
found in both the transcriptome and proteome, whereas 342 pro-
teins were found only in the proteome (Figure 3C). Separation
analyses of the proteome and transcriptome showed a clear sep-
aration among these treatments with 53.1% (transcriptome) and
69.8% (proteome) variation (Figure 3B). However, there was a

FIGURE 5. Heat maps of circadian clock genes at transcript and protein
levels of Chrysoperla nipponensis female during adult reproductive dia-
pause. (A) Circadian clock genes. (B) Marker genes (Vg and VgR). Data are
presented as means of three independent samples.

noticeable clustering difference between the transcriptome and
proteome (Figure 3B). At the transcriptional level, L5 was clustered
with $10, S20 and S40, but was separated from the two clusters of
LO and SO (Figure 3B, left). At the proteomic level, L5 formed as
one separate cluster, whereas $10, S20 and S40 were also clus-
tered together (Figure 3B, right). These results indicated that:
(1) the changes in transcripts at L5, S10, S20, and S40 differed con-
siderably from newly emerged adults at LO and SO; and (2) the
proteomic changes in S10, S20, and S40 appeared to be in a differ-
ent direction from the changes observed in L5.

These identified transcripts and proteins were clustered into six
groups based on hierarchical clustering analysis of transcriptomic
and proteomic data (Figures 4A and S2). In addition, proteins in
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FIGURE 6. Heat maps of insect hormone genes and proteins of Chrysoperla nipponensis female during adult reproductive diapause. (A) Juvenile hormone
(JH) related genes. (B) Molting hormone related genes. (C) Genes involved in insulin/TOR pathway. (D) Marker genes. (E) Effects of JH Ill on pre-oviposition
period of diapausing female adults. Data are presented as means of three independent samples.

cluster 1 were highly enriched in the metabolic pathway, carbon
metabolism, and citrate cycle (TCA cycle; Figures 4B and S3).
Genes in clusters 2 and 6 were involved in fatty acid metabolism,
insect hormone and carbohydrate utilization (Figures 4B and S3).

3.3 Analysis of differential expressions of genes and
proteins

The differential expressions of genes and proteins are given in
Table 1. Multiple comparisons of different treatments are also pro-
vided in Tables S2 and S3. SO had fewer than 100 differentially
expressed genes and proteins compared with LO, whereas L5
had significantly different expression profiles for more than
5000 genes and 1803 proteins (Table 1). Around 2000 genes
showed different expression levels in S10, 520, and S40 compared
with SO (Table 1).

The majority of circadian genes could be found only at the tran-
script level (Table 2 and Figure 5A). Only CRY1, a blue-light photore-
ceptor, was detected at both the transcript and protein levels
(Table 2 and Figure 5A). The expression pattern of CLK was similar
to VgR (Figure 5). PER, TIM and CYC showed the highest expression
levels in LO, whereas CRYT showed the highest transcript and protein
levels in S10 (Figure 5A). In diapause female adults of C. nipponensis,
CRY1 was primarily expressed at the transcript level (Figure 5A). TIM
was considerably downregulated in SO, S10 and S20 compared with
LO and L5 (Figure 5A). However, its expression increased in S40
(Figure 5A). Expression patterns of Vg and VgR differed at the tran-
script level, but were similar at the protein level (Figure 5B).

The JH synthesis genes JHAMT2 and CYP15A1 were highly
expressed in S10 and S20, whereas JHAMT2 protein had a higher
abundance in SO, S20 and S40 (Table 3 and Figure 6A). Expression
levels of HMGS, HMGR, and MevK were higher in L5, S10, S20 and
S40 than in SO and LO (Figure 6A). Genes of FOLD showed rela-
tively higher expression in LO at the transcript level, but there
were no clear expression patterns in the proteome (Figure 6A).
The majority of JH degradation-related genes were highly

expressed in L5, S10, S20, and S40 at both the transcriptomic
and proteomic levels (Figure 6A). In newly emerged adults
(SO and LO0), JH receptor Met expression was higher, and then sub-
sequently decreased (Figure 6A). However, FKBP39, which partici-
pated in JH reception and cell metabolism, showed a reversed
pattern of expression to Met (Figure 6A).*® Expression of
ecdysone-related genes was consistent with JH degradation-
related genes (Figure 6B). Similarly, ILP3, ILP4, IR1, ERK, Pten, Pi3K,
InK and VgR were highly expressed in L5, $S10, S20 and S40
(Figure 6C,D). PMK, Kr-h1, Phm and Vg were only upregulated in
L5 and S40 (Figure 6). Interestingly, at the transcript level, mTOR
was predominately expressed in diapause female adults although
it was upregulated at the protein level in only L5 and S40
(Figure 6C). Topical application of JH lll rescued the reproductive
arrest (df = 2; F=321.7; p < 0.001) of C. nipponensis under a short
photoperiod, and no impairment in fecundity was observed
(df = 2; F = 22.48; p < 0.001) in rescued diapause female adults
(Figures 6E and S4). The gPCR results for JHAMT2 (df = 5;
F = 55.16; p < 0.001), Kr-h1 (df = 5; F = 166.6; p < 0.001), ILP3
(df = 5; F=154.9; p < 0.001), ILP4 (df = 5; F = 48.61; p < 0.001),
IR1 (df = 5; F = 1425; p <0.001), Vg (df = 5 F = 177.2;
p < 0.001) and VgR (df = 5; F = 38.40; p < 0.001) showed expres-
sion profiles similar to the transcriptomic results (Figure S5).
Only two of six putative fatty acid synthesis genes were
detected at both the transcript and protein levels (Table 4 and
Figure 7). When exposed to a short photoperiod, expression of
ACC was increased and was also higher in L5 than in LO at the pro-
tein level (Figure 7). p-Oxidation, lipid transport and storage genes
displayed similar expression profiles at the transcript and protein
levels (Figure 7). At the protein level, expression of CPT-3, ACD-1,
ACD-2, ACD-4, ACD-6, LSD1, HCDH-2, and BK-2 was upregulated
during reproductive diapause, whereas CPT-1, CPT-2, ACD-3 and
ACD-5 showed higher expression in LO and SO than in L5, S10,
S20 and S40 (Figure 7). At the transcript level, expression of lipase
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|
in newly emerged adults (LO and SO) was higher than in L5, S10,

g S20 and 5S40, and was higher during reproductive diapause
Blomocsaows oo (Figure 7). ACC (df = 5; F = 22.74; p < 0.001), ACD6 (df = 5;
s|lgdngnaN 2o F = 61.52; p < 0.001) and FAD6 (df = 5; F = 241.8; p < 0.001)
g aom Mmoo showed the highest abundance in S40, whereas CPT3 (df = 5;
o F=10.14; p < 0.001), HCDH3 (df = 5; F = 26.64; p < 0.001), LSD1
(df = 5, F = 63.43; p <0.001) and LSD2 (df = 5; F = 37.21;
- o o p < 0.001) were most abundant in S10 (Figure S5). Gene expres-
378 =23 sion patterns from gPCR results were consistent with their expres-
% gL 22g sion levels in the transcriptome (Figures 7 and S5).
SMos 2R o o o Based on the expression profile of genes and proteins related to
lipid metabolism, LO and SO clustered beside the proteomic
- = - = = - = results in glycerophospholipid metabolism (Figure S6). More
c| Qe 282 2 genes were significantly higher in L5, S10, S20, and S40
sl - -~ o x O 0 - i
a 'ﬁ g 5 oo g g £ a ﬁ (Figure S6). At the protein levels, the abundance of
§ TSshgerod oo glycerophospholipid-related proteins was higher in S10 520, and
< 3 3 g g Z' zl 3 z\ Z| S40 than in LO, SO and L5 (Figure S6). Only a small number of dif-
X X X a X X X X X

ferential genes and proteins were found in sphingolipid metabo-
lism (Figure S6).

At the transcript level, the expression of glucose-6-phosphate
isomerase genes was significantly higher in diapause female
adults than in non-diapause female adults. By contrast, two of
these genes were predominately expressed in L5 at the protein
level (Figure 8A). Compared with other treatments, L5 exhibited
significantly higher levels of the genes for fructose-bisphosphate
aldolase, glyceraldehyde 3-phosphate dehydrogenase, triosepho-
sphate isomerase and enolase (Figure 8A). Interestingly, the major

5 genes involved in TCA cycles showed considerably greater pro-
Y . . .
S tein abundance in S10, S20, and S40 compared with LO, L5, and
TR = SO (Figure 8B). However, no clear expression patterns were
o S . . . .
§ S § observed at the transcript level (Figure 8B). The hexokinase, trio-
ﬁ § g sephosphate isomerase, phosphoglucomutase, dihydrolipoamide
.| = g g = % dehydrogenase, 2-oxoglutarate dehydrogenase E1 component
> 0 . S . . . . o
835 T39 S £ and isocitrate dehydrogenase showed significantly higher expres-
o2 ESg LSS = ) . .
2| 83882488 g¢ sion levels in L5 and 520 (Figure 8).
[} Qg ¥ € = —
@l S8LLS SE
€ o 'a g = = o QS &5
ES83¢es £¢
2 [S) x Q2
cEeoggs B 4 DISCUSSION
S 5T 5 5= - . ) .
% g £ % 5 ® E 8= Generally, insects increase the accumulation of energy reserves
EIN®SS g oI during the diapause preparation stage and depress metabolism
$9838cC¢ EE during diapause.? In this study, we found greater weight gain
S S55E8E ] 55 in field overwintering populations and short photoperiod-
v UV QO s B . . . . ..
e 2800 SERo induced diapause female adults of C. nipponensis. Similarly, pre-
— (v} vl . . . .
2223 é § ¥ o9 diapause females of Colaphellus bowringi and diapause pupae of
ccoo —'>—'>\§ % g both female and male Hyphantria cunea have higher dry
v v . . . ..
‘g.',’ § Z‘" ‘g; &85  EE weights.”*® Previous studies demonstrated that lipids are one of
2222 ER £ 22 the most important energy reserves in diapause insects."*® Our
8398222 8§35 results showed obvious accumulations of total lipid and TAG con-
E‘ Q ? é? g &5 ; é tent in female adults of C. nipponensis during overwintering and in
short photoperiod-induced diapause female adults. In Colaphellus
bowringi and H. cunea, diapause insects had higher lipid accumu-
[J] N . .
g lations and TAG content than non-diapause insects.***” The car-
©
c = bohydrate, lipid, and TAG contents in pre-diapause female
[} S LD ONQRN =, = L. . . . . .
AEEEEEEEEEE adults of H. axyridis are significantly higher than in pre-productive
(o .
g e e T female adults. By contrast, pre-diapause males only accumulate
2 g more carbohydrates.>'® Ips typographus had reduced post-
€ N S - — diapause fitness and higher mortality when nutritional reserves
S ATAAASAFHE T low.*® These findings d d that di femal
o oo oo dE S were low. ese findings demonstrated that diapause female
N R NI - adults of C. nipponensis hold more energy resources and inhibit
N Sledanladsss 2O PP oy (O]
2 g|CogRg@n o their metabolism to successfully withstand the winter.
el22g8 =R S © =
[ Z2Z2ZZZ2ZZ2Z S5 ZZ i i i i
= $|BEE3535552553 Our previous studies showed that a short photoperiod induces

reproductive diapause in C. nipponensis.3®3° The circadian genes
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samples.

are involved in photoperiod sensing.*® Transcriptome and pro-
teome results showed that the expression pattern of CLK was
similar to that of VgR, and the TIM expression pattern was more
consistent with expression of Vg. In Riptortus pedestris, injection
with CLK double-strand RNA (dsRNA) did not influence on the
diapause female, although it caused ovarian development arrest

in non-diapause females.”® Recently, Zhu et al. reported that
knockdown of TIM in Colaphellus bowringi did not affect
diapause-destined females but impaired lipid accumulation dur-
ing the diapause preparation phase.”’ By contrast, TIM dsRNA-
injection averted diapause in Culex pipiens.>' Our finding of
TIM and CLK expression patterns suggest that they might be

]
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FIGURE 9. Potential model explaining how photoperiod regulates reproduction and diapause in Chryaoperla nipponensis. Under the short photoperiod,
TIM expression is downregulated, whereas CRY1 is upregulated. These photoperiodic response genes inhibit the expression of key genes in the insulin
pathway such as IR7 and ILP4, but stimulate mTOR expression. Suppression of the insulin signal subsequently blocks juvenile hormoe (JH; PMK) and
20-hydroxyecdysone (20E; Phm) synthesis, thereby results in lower expression Kr-h1, which finally stimulates ACC, LSD1 and LSD2 expression for lipid accu-
mulation and inhibits the expression of Vg leading to ovarian dormancy. However, under the long photoperiod condition, insulin, JH and 20E are synthe-

sized normally, thereby triggering ovarian development and lipid utilization.

important in diapause induction and maintenance in
C. nipponensis.

The insulin pathway is crucial to initiating insect diapause by
regulating ovarian development and nutritional metabolism.**’
Our transcriptome and proteome results showed that the expres-
sion patterns of ILP4, IR1, ERK, Pten, Pi3K, and InK were similar to
that of VgR, and ILP3, mTOR and Raptor were predominately
expressed in diapause females of C. nipponensis. However, at the
protein level, only mTOR and AMPK showed expression patterns
similar to Vg and VgR. Triple deletion of ILP2, -3 and -5 led to strong
induction of diapause in Drosophila melanogaster, whereas their
overexpression rescued ovarian dormancy.>® Han et al. reported
that inhibited expression of IR2 resulted in depression of ovarian
development, a typical diapause phenotype in reproductive dia-
pause insects.>! Depletion of InR and ILP-1 prevented ovarian mat-
uration in non-diapause female adults of Culex pipiens.?’>°
Application of the JH analog methoprene rescued ovarian devel-
opment in dsinR-injected Culex pipiens.>” RNAi knockdown of IR
delayed ovarian development and resulted in a lower JH titer.>
Similarly, mutation of /R reduced JH synthesis in
D. melanogaster.>® These findings suggested that the insulin path-
way is involved in the insect diapause process by altering the JH
synthesis.

Numerous studies have shown that insect hormones such as JH
and ecdysone are essential for insect diapause induction, mainte-
nance and termination.® Our combined transcriptomic and pro-
teomic analyses showed that expression of HMGS, HMGR, MevK,
JHEH1, FKBP39, and ECR were consistent with the expression of
VgR. By contrast, only PMK, Kr-h1, and Phm showed similar expres-
sion profiles to Vg (Figure 6). mTOR was predominately expressed
in diapause females at the transcript level, whereas its expression
patterns at the protein level were similar to those of Vg (Figure 6).
Topical application of JH Ill rescued reproductive arrest under a
short photoperiod (Figure 6). In Colaphellus bowringi, genes

involved in JH biosynthesis and degradation were suppressed
under diapause-inducing conditions.*’>>*¢ Knockdown of HMGR
and JHAMT significantly arrested female reproduction and caused
lipid accumulation in the fat body.>® Similarly, silencing of JHAMT
in L. decemlineata, H. axyridis, S. furcifera and B. germanica also
induced ovarian arrest.'®'®2° Expression of Kr-h1 in H. axyridis,
Colaphellus bowringi and G. daurica showed lower transcript levels
in diapause female adults than in non-diapause female
adults."*'¢'72! |njection of dsKr-h1 in H. axyridis and Colaphellus
bowringi resulted in ovarian arrest, higher expression of lipogene-
sis genes, and nutrient accumulation.'®'”?"?* Thus, we specu-
lated that differentially expressed JH-related genes, especially
Kr-h1, PMK and HMGR, between non-diapause and diapause
female adults of C. nipponensis should be involved in the mainte-
nance of diapause. Recently, Guo et al. found that non-diapause
female adults of Colaphellus bowringi had a significantly higher
titer of 20-hydroxyecdysone (20E) and exogenous 20E could
induce ovary development in diapause female adults.>’ More
interestingly, exogenous 20E treatment significantly increased
the biosynthesis of JH and upregulated the expression of JH-
related genes.>” Knockdown of ECR in non-diapause female adults
had a reproductive defect, and juvenile hormone analog (JHA)
application can rescue this defect.>” Consistent with our results,
lower expression of Phm was observed during diapause in Cola-
phellus  bowringi, Chymomyza costata, and Mamestra
brassicae.>’>° These results indicated that a short photoperiod
might induce reproductive diapause in C. nipponensis by altering
the expression of genes in the JH and 20E signaling pathways.
As noted earlier, lipid accumulation and inhibition of lipid
metabolism were found in diapause female adults of
C. nipponensis. Our transcriptome and proteome results showed
that ACC, which converts sugar to fat, and LSD1 and LSD2, which
are involved in lipid accumulation, showed increased expression
in diapause females of C. nipponensis (Figures 6 and $4).>%°~%2
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Similarly, expression of ACC was higher in diapause female adults
of Coccinella septempunctata than in non-diapause female
adults.®' Knockdown of ACC led to decreased lipid content in dia-
pause female adults of C. septempunctata.®’ LSD2 transcript levels
were significantly higher in diapause females of Aedes albopictus
and L. decemlineata than in non-diapause females.®®%® [SD2
depletion decreased the lipid content in L. decemlineata.®® In Lis-
sorhoptrus oryzophilus, LSD1 showed a higher expression level in
overwintering female adults, whereas LSD2 showed higher
expression in summer female adults.%* Consistent with these pre-
vious studies, our results revealed that ACC, LSD1, and LSD2 might
be key genes involved in lipid accumulation and storage in
C. nipponensis during reproductive diapause.

5 CONCLUSION

In this study, we quantitively analyzed the weight, lipid and TAG
content in female adults of C. nipponensis during overwintering
and reproductive diapause. We found that diapause female adults
of C. nipponensis retain more energy resources and inhibit metab-
olism of these resources to successfully overwinter (Figure 9). In
addition, we also presented a large-scale investigation of global
gene and protein expression changes during reproductive dia-
pause of female adults using transcriptome and proteome analy-
sis. The results showed that TIM and CRY7T might be involved in
photoperiod sensing (Figure 9). Moreover, the JH, 20E and insulin
signaling pathway genes, especially PMK, FKBP39, Kr-h1, Phm, IR1,
ILP4, and mTOR, might be involved in the induction and regula-
tion of reproductive diapause in C. nipponensis (Figure 9). ACC,
LSD1, and LSD2 might be the key genes linked with lipid accumu-
lation and storage (Figure 9). Further functional studies on these
candidate genes are required to understand the molecular mech-
anisms regulating C. nipponensis reproductive diapause. Our res-
cue experiment of reproductive arrest by topical application of
JH Il suggested that C. nipponensis could be a promising commer-
cial biological agent by combining mass-rearing and mass storage
under a short photoperiod in the factory and rescue with JH I
before release in the greenhouse or field. Overall, the results of
this study provided basic information toward understanding
reproductive diapause and facilitating the mass production and
storage of C. nipponensis.
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